Field-effect transistor structures with a quasi–1D channel

S. V. Rotkin†, H. Ruda‡ and A. Shikh‡
† Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
‡ Electronic Material Group, University of Toronto, Toronto M5S3E4, Canada

Abstract. A theory of drift–diffusion transport in a low–dimensional field effect transistor (FET) with a quantum wire channel, which may be a semiconductor nanowire or a carbon nanotube, is developed. Two cases of a semiconductor nanowire and a single–wall nanotube are considered using self–consistent electrostatics to obtain a general expression for transconductance. This quantum wire channel device description is shown to differ from classical device theory because of the specific nanowire charge density distribution.

In the present work we consider carrier distributions and parameters of a field effect transistor (FET) with a quantum wire channel, which may be a semiconductor nanowire or a carbon nanotube. The structure includes source and drain electrodes connected by a nanowire/nanotube channel, which may be a semiconductor nanowire or a carbon nanotube containing no channel charge density and the components \(\phi_{s,a}(x) \) caused by the electric charge in the channel containing both logarithmic geometrical capacitance, \(C^{-1}_Q \sim \ln(l/a) \), similar to (1) and the quantum capacitance of the 1D electron gas, \(C_Q = 1/(e^2\nu) \) \(\approx 0.31 \) for one degenerate subband of a single wall nanotube. The same simplified expression is also derived from (1) in the limit \(\nu = 2e^2\ln(l/a)/(\hbar\Delta V_g) \) \(\gg 1 \).

The boundary conditions \(\rho(\pm L/2) = n_c \) assume the source and drain to support constant concentration at the contacts, independent of the applied voltage. For \(n_c \neq N \) our formulae require some modification. In the closest vicinity of contacts a finite charge density \(\epsilon(N - n_c) \) exists in the channel. To provide equipotentiality of metallic contacts, we must assume the presence of oppositely charged images inside the contacts. This means discontinuity of charge density at \(x = \pm L/2 \) and makes doubtful the adequacy of continuum approach assuming smooth charge and potential variations. To avoid this difficulty, we measure \(n \) from \(n_c \), by assuming \(n(x) = n_c + \Delta n(x) \) with the simultaneous inclusion in potential the component \(\phi_c(x) \) representing potential of a wire with uniform charge \(\epsilon(N - n_c) \) between metallic contacts \(x = \pm L/2 \) calculated in [2].

Now we can find the carrier concentration \(n(x) \) and the electric current \(j \) caused by the voltages \(V_d \) and \(V_g \). The problem is relatively simple if we restrict ourselves to the linear case of small \(V_d \). In the zeroth approximation both \(\phi_0(x) \) and \(n(x) \) contain only a symmetric component: \(n_c(x) = n_c + \Delta n_c(x) \). \(\Delta n_c(x) \) should be found from (1) with \(j = 0 \) and \(\phi_0(x) = \phi_s(x) + \phi_d(x) \) where \(\phi_s(x) \) is the potential created by the gate electrode. When \(n(x) \) is found, (1) can be linearized in \(n_c \) and solved with the conditions \(n_c(0) = n_c(L/2) = 0 \). This gives the concentration profile and the current \(j \), which appears essentially simple for a single–wall nanotube or \(A \gg 1 \) where the problem is reduced to the ordinary Kirchhoff’s law:

\[
j = \frac{V_d}{R}, \quad R = \frac{2}{e\mu} \int_0^{L/2} dx \frac{1}{n_c + \Delta n_c(x)}.
\]

The resulting \(j \) depends on the gate voltage \(V_g \) through the functions \(\phi_0(x) \) and \(\Delta n_c(x) \), which allows us to calculate the transistor transconductance \(dj/dV_g \).

The potential profile \(\phi_0(x) \) and hence all the results depend noticeably on the geometry of the source and drain contacts. We consider in detail bulk contacts representing metallic or heavily doped semiconductor regions with all three dimensions considerably exceeding \(a, d \) and \(L \) and the system being infinite. By solution of corresponding Laplace equation we find the potential distribution \(\Phi(x, y) \) created by this system...
of electrodes in the absence of a wire. The resulting $\Phi(x, d)$ contains two terms: that proportional to V_g and corresponding to $\phi_a(x)$ and that proportional to V_d which corresponds to $\phi_d(x)$.

If the simple expression (3) is applicable, the dimensionless current $i = j L/(n_0 e \mu V_d)$ has an explicit form:

$$i = \left[2 \int_0^{1/2} \frac{dt}{1 + g g(t)}\right]^{-1}$$ \hspace{1cm} (4)

where $g = 2e V_g/\pi e n_0 \ln(l/a)$ is the dimensionless gate voltage and for $n_c = n_0$.

$$\Psi(t) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)} \cos[\pi t(2n+1)] \exp[-\pi d(2n+1)/L].$$

The channel conductivity near the cut-off is determined by the point of minimal concentration, which in a symmetric structure is $x = 0$, and hence is determined by the properties of $\Psi(t)$ at small t. Expansion of $\Psi(t)$ allows us to perform integration in (4) and obtain

$$i = \frac{\sqrt{(g - g_0) \sinh(\pi d/L)}}{\sqrt{2 \cosh(\pi d/L)}},$$

$$g_0 = -\left[\frac{\pi}{2} - \arctan[\exp(-\pi d/L)]\right]^{-1}.$$ \hspace{1cm} (5)

Thus the transconductance di/dg increases in the vicinity of cut-off $\sim (g - g_0)^{-1/2}$.

In the structures with two- and even quasi-one-dimensional contacts the potential profiles ϕ_{x}, ϕ_{y} and ϕ_{d} have essentially different x-dependence with singularities near contacts [2]. In our case it means a different profile for the $\Psi(t)$ function. Its expansion near the maximum is, of course, also quadratic and hence results in the same qualitative final result $di/dg = B(g - g_0)^{-1/2}$, with particular values of the cut-off voltage g_0 and the coefficient B different from the case of bulk contacts.

The simplified expressions (2), (4) neglected diffusion, which is equivalent to the limit of zero temperature. The formula $\Delta n_0(x) = C_x \phi_{x}(x)$ resulted from (2) in equilibrium simply gives $n = 0$ for all points where $\phi_{y}(x) < -C_{y}^{-1} n_c$. Thus in the linear approximation, the cut-off voltage g_0 corresponds to the condition $\phi_{y}(0) = -C_{y}^{-1} n_c$ and at lower g the current is exactly zero. It is evident that at non-zero temperatures the current at $g < g_0$ will have an activation behaviour: $j \sim \exp(-\Delta/kT)$ where $\Delta = e(-C_{y}^{-1} n_c - \phi_{y}(0))$. Since $\phi_{y}(0)$ depends linearly on V_g, the activation energy Δ is directly proportional to $g_0 - g$.

In the case of arbitrary V_d when the linear approach fails, the problem requires numerical solution of the general non-linear equations (1) or (2) with the potential consisting of three parts: $\phi_{y}(x) = \phi_{x}(x) + \phi_{d}(x)$ describing, respectively, the influence of contact work function, gate voltage and source-drain voltage and calculated earlier. Two boundary conditions: $n(\pm L/2) = n_c$ determine the integration constant and the so far unknown value of j. Since $\phi_{d}(x)$ is proportional to V_d and $\phi_{d}(x)$ is proportional to V_g, the resulting solution gives us the current-voltage characteristic (CVC) $j(V_d)$ for various gate voltages.

To calculate it quantitatively, we choose particular values $\ln(l/a) = 3$ and $d/L = 0.3$. As an illustration, we consider the ideal Ohmic contacts with $n_c = N$ where the dimensionless threshold estimated with (5) $g_0 = -2.7$. Figure 1(a) shows CVC at $g = -2.8$ (below the threshold) and $g = -2.5$ (above the threshold). All characteristics have a superlinear character, which has a simple explanation. High drive voltage V_d tends to distribute carriers uniformly along the channel. In our conditions when powerful contact reservoirs fix the concentration n at the points where it is maximal, such a re-distribution will increase the minimal value n in the center of channel and hence increase conductivity of the latter.

Figure 1(a) presents also information on temperature dependence of the channel conductivity. Above the threshold this dependence is practically absent. The CVC curves for $g = -2.5$ at different temperatures does not deviate from the dashed line corresponding to $e k T/(\epsilon^2 n_c) = 0.2$ more than by 10% and are not shown in the figure. For V_d below threshold and not very high V_d, Fig. 1(a) demonstrates a strong temperature dependence of the current shown in more details in Fig. 1(b) calculated for low enough V_d corresponding to the linear initial part of CVC. While the two upper curves for the above-threshold V_d have no noticeable temperature dependence, the two lower curves demonstrate such a dependence with Δ growing with V_d, in accordance with the predictions. At high V_d, where contact injection and electric field tend to create uniform carrier concentration equal to n_c, the different curves merge and temperature dependence collapses.

Acknowledgements

One of us (SVR) is indebted to Prof. K. Hess for valuable discussions and acknowledges support through NSF Grant ECS-0210495, DoE Grant DE-FG02-01ER45932, and Beckman Fellowship from the Arnold and Mabel Beckman Foundation.

References

